Oral Complications of Chemotherapy and Head/Neck Radiation (PDQ®): Supportive care - Health Professi
Oral Complications of Chemotherapy and Head/Neck Radiation (PDQ®): Supportive care - Health Professional Information [NCI]-Late Complications of Head and Neck Radiation
Late oral complications of radiation therapy are chiefly a result of chronic injury to vasculature, salivary glands, mucosa, connective tissue, and bone.[1,2,3,4] The types and severity of these changes are directly related to radiation dosimetry, including total dose, fraction size, and duration of treatment.
Mucosal Lesions
General Information About Pancreatic Cancer
This summary provides information about the treatment of exocrine pancreatic cancer. Other PDQ summaries containing information related to cancer in the pancreas include the following: Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. Unusual Cancers of Childhood Treatment (pancreatic cancer during childhood). Incidence and MortalityEstimated new cases and deaths from pancreatic cancer in the United States in 2014:[1] New cases: 46,420. Deaths: 39,590...
Read the General Information About Pancreatic Cancer article > >
Mucosal lesions include epithelial atrophy, reduced vascularization, and submucosal fibrosis. These changes lead to an atrophic, friable barrier. Fibrosis involving muscle, dermis, and the temporomandibular joint results in compromised oral function. Salivary tissue changes include loss of acinar cells, alteration in duct epithelium, fibrosis, and fatty degeneration. Compromised vascularization and remodeling capacity of bone leads to risk of osteonecrosis.
Salivary Gland Hypofunction and Xerostomia
Ionizing radiation to salivary glands results in inflammatory and degenerative effects on salivary gland parenchyma, especially serous acinar cells. The early salivary gland tissue response to irradiation results in decreased salivary flow rates within the first week of treatment, and xerostomia (the subjective feeling of oral dryness) becomes apparent when doses exceed 10 Gy.
The degree of dysfunction is related to the radiation dose and volume of glandular tissue in the radiation field. Doses larger than 54 Gy are generally considered to induce irreversible dysfunction. Serous parotid glands may be more susceptible to radiation effects than are nonserous submandibular, sublingual, and minor salivary gland tissues. Management strategies described for late salivary gland complications are generally applicable to the acute complications in the head/neck radiation patient. (Refer to the Oral and dental management of the xerostomic patient section of this summary for more information.)
Salivary gland hypofunction (decreased salivary gland secretion) and xerostomia are among the most frequent and severe long-term side effects of radiation therapy to the head and neck region. The adverse effects will have a significant impact on a patient's quality of life in a lifelong perspective after radiation treatment.[5]
Xerostomia is caused by salivary gland hypofunction. Saliva is necessary for the normal execution of oral functions such as taste, swallowing, and speech. Unstimulated whole salivary flow rates lower than 0.1 mL per minute are considered pathologic low (normal salivary flow rate = 0.3-0.5 mL/min).[6]
Mucosal Lesions
Recommended Related to Cancer
General Information About Pancreatic Cancer
This summary provides information about the treatment of exocrine pancreatic cancer. Other PDQ summaries containing information related to cancer in the pancreas include the following: Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Treatment. Unusual Cancers of Childhood Treatment (pancreatic cancer during childhood). Incidence and MortalityEstimated new cases and deaths from pancreatic cancer in the United States in 2014:[1] New cases: 46,420. Deaths: 39,590...
Read the General Information About Pancreatic Cancer article > >
Mucosal lesions include epithelial atrophy, reduced vascularization, and submucosal fibrosis. These changes lead to an atrophic, friable barrier. Fibrosis involving muscle, dermis, and the temporomandibular joint results in compromised oral function. Salivary tissue changes include loss of acinar cells, alteration in duct epithelium, fibrosis, and fatty degeneration. Compromised vascularization and remodeling capacity of bone leads to risk of osteonecrosis.
Salivary Gland Hypofunction and Xerostomia
Ionizing radiation to salivary glands results in inflammatory and degenerative effects on salivary gland parenchyma, especially serous acinar cells. The early salivary gland tissue response to irradiation results in decreased salivary flow rates within the first week of treatment, and xerostomia (the subjective feeling of oral dryness) becomes apparent when doses exceed 10 Gy.
The degree of dysfunction is related to the radiation dose and volume of glandular tissue in the radiation field. Doses larger than 54 Gy are generally considered to induce irreversible dysfunction. Serous parotid glands may be more susceptible to radiation effects than are nonserous submandibular, sublingual, and minor salivary gland tissues. Management strategies described for late salivary gland complications are generally applicable to the acute complications in the head/neck radiation patient. (Refer to the Oral and dental management of the xerostomic patient section of this summary for more information.)
Salivary gland hypofunction (decreased salivary gland secretion) and xerostomia are among the most frequent and severe long-term side effects of radiation therapy to the head and neck region. The adverse effects will have a significant impact on a patient's quality of life in a lifelong perspective after radiation treatment.[5]
Xerostomia is caused by salivary gland hypofunction. Saliva is necessary for the normal execution of oral functions such as taste, swallowing, and speech. Unstimulated whole salivary flow rates lower than 0.1 mL per minute are considered pathologic low (normal salivary flow rate = 0.3-0.5 mL/min).[6]