Could Household Plumbing Cause Chronic Rhinosinusitis?
Could Household Plumbing Cause Chronic Rhinosinusitis?
We reviewed the charts of 33 adult outpatients in whom CRS was diagnosed in the medical practice of W.S. Tichenor, whose endoscopically directed sinus cultures yielded NTM. The 33 represent ≈1% of patient samples collected over a 10-year period. In all patients, CRS had been diagnosed on the basis of a combination of initial evaluation; appearance of the sinuses by endoscopic examination; results of computed tomographic scan; and endoscopically directed cultures for bacteria, fungi, and NTM. From all patients, bacterial isolates had been cultured at the time of endoscopy.
Initial symptoms, NTM identity, surgical history, HIV status, cystic fibrosis history and carrier status, diabetes and immune-deficiency status, current nasal irrigations, presence of polyps, treatment, repeat culture results, and symptom reduction were assessed (Table 1). Common patient conditions at the time of nasal endoscopy included headache, nasal blockage or congestion, thick postnasal drip, and decreased ability to taste or smell. Thirty (91%) of the 33 patients had previously undergone endoscopic sinus surgery; 10 (30%) had histories of primary immunodeficiency. Twelve (36%) of the 33 patients had evidence of polyps at the time of nasal endoscopy; however, no clear association was found between NTM species and the presence of polyps. Thirty-one (94%) of 33 patients were using some form of nasal irrigation at the time of endoscopy. Of those, 26 were known to have used tap water to irrigate the sinuses.
Endoscopically directed samples were taken directly from the sinuses, middle meatus, or ostiomeatal unit by using a flexible catheter with a self-contained Lukens trap as described. Samples (0.5–3 mL) were sent to the microbiology laboratories (Mayo Medical Laboratories, Rochester, MN, USA; Specialty Laboratories, Valencia, CA, USA; Quest Laboratories, Peterboro, NJ, USA) in sterile 5-mL containers.
Members of households with occupants who had NTM-associated CRS volunteered to participate in studies of their households' water systems. Informed consent was obtained from each collaborating patient, and the study was reviewed by the Virginia Tech Institutional Research Board and granted exempt status. NTM isolates from the patients were obtained through laboratories that cultured NTM from endoscopy samples. Containers, swabs, and tubes were sent to each collaborating patient's household. Directions were provided for the collaborating patient or family member to collect hot and cold water samples (500 mL) and biofilms/sediment from water taps and showerheads. Biofilm samples were collected by swabbing the inside of taps and showerheads, and swab specimens were placed in tubes containing 2 mL of tap water (from Blacksburg, VA, USA), sterilized by autoclaving. If in-line or point-of-use water filters were submitted by the patients, a 4-cm area was swabbed, and the swab was placed in 2 mL of sterile tap water.
Patient NTM isolates were identified by various methods, depending on the laboratory: DNA probe, high-performance liquid chromatography, gas-liquid chromatography, internal transcribed spacer region or 16S rDNA sequencing. NTM in water and swab (taps and filters) samples were enumerated and isolated as described. Household NTM isolates and those from patients were identified by nested PCR of 16S rRNA gene and PCR amplification and analysis of restriction endonuclease digestion fragments of the hsp-65 gene. When the Mycobacterium species of the patient and household water system isolates were identical, isolates were fingerprinted by rep-PCR and pulsed-field gel electrophoresis (PFGE) of AseI and XbaI restriction endonuclease digests of genomic DNA. To interpret PFGE in categories of "indistinguishable," "closely related," and "different," we used previously described criteria for the evaluation of Mycobacterium avium complex isolates. With a minimum of 10 interpretable bands, strains were interpreted as indistinguishable (no band differences), closely related (1–3 band differences), possibly related (4–6 band differences), and different (>7 band differences). These isolates underwent species confirmation by sequencing of the internal transcribed spacer 1. M. intracellulare and M. chimaera are indistinguishable without gene/region sequencing.
Methods
Patient Histories
We reviewed the charts of 33 adult outpatients in whom CRS was diagnosed in the medical practice of W.S. Tichenor, whose endoscopically directed sinus cultures yielded NTM. The 33 represent ≈1% of patient samples collected over a 10-year period. In all patients, CRS had been diagnosed on the basis of a combination of initial evaluation; appearance of the sinuses by endoscopic examination; results of computed tomographic scan; and endoscopically directed cultures for bacteria, fungi, and NTM. From all patients, bacterial isolates had been cultured at the time of endoscopy.
Initial symptoms, NTM identity, surgical history, HIV status, cystic fibrosis history and carrier status, diabetes and immune-deficiency status, current nasal irrigations, presence of polyps, treatment, repeat culture results, and symptom reduction were assessed (Table 1). Common patient conditions at the time of nasal endoscopy included headache, nasal blockage or congestion, thick postnasal drip, and decreased ability to taste or smell. Thirty (91%) of the 33 patients had previously undergone endoscopic sinus surgery; 10 (30%) had histories of primary immunodeficiency. Twelve (36%) of the 33 patients had evidence of polyps at the time of nasal endoscopy; however, no clear association was found between NTM species and the presence of polyps. Thirty-one (94%) of 33 patients were using some form of nasal irrigation at the time of endoscopy. Of those, 26 were known to have used tap water to irrigate the sinuses.
Patient Sample Collections
Endoscopically directed samples were taken directly from the sinuses, middle meatus, or ostiomeatal unit by using a flexible catheter with a self-contained Lukens trap as described. Samples (0.5–3 mL) were sent to the microbiology laboratories (Mayo Medical Laboratories, Rochester, MN, USA; Specialty Laboratories, Valencia, CA, USA; Quest Laboratories, Peterboro, NJ, USA) in sterile 5-mL containers.
Household Collections
Members of households with occupants who had NTM-associated CRS volunteered to participate in studies of their households' water systems. Informed consent was obtained from each collaborating patient, and the study was reviewed by the Virginia Tech Institutional Research Board and granted exempt status. NTM isolates from the patients were obtained through laboratories that cultured NTM from endoscopy samples. Containers, swabs, and tubes were sent to each collaborating patient's household. Directions were provided for the collaborating patient or family member to collect hot and cold water samples (500 mL) and biofilms/sediment from water taps and showerheads. Biofilm samples were collected by swabbing the inside of taps and showerheads, and swab specimens were placed in tubes containing 2 mL of tap water (from Blacksburg, VA, USA), sterilized by autoclaving. If in-line or point-of-use water filters were submitted by the patients, a 4-cm area was swabbed, and the swab was placed in 2 mL of sterile tap water.
NTM Isolation, Identification, and Fingerprinting
Patient NTM isolates were identified by various methods, depending on the laboratory: DNA probe, high-performance liquid chromatography, gas-liquid chromatography, internal transcribed spacer region or 16S rDNA sequencing. NTM in water and swab (taps and filters) samples were enumerated and isolated as described. Household NTM isolates and those from patients were identified by nested PCR of 16S rRNA gene and PCR amplification and analysis of restriction endonuclease digestion fragments of the hsp-65 gene. When the Mycobacterium species of the patient and household water system isolates were identical, isolates were fingerprinted by rep-PCR and pulsed-field gel electrophoresis (PFGE) of AseI and XbaI restriction endonuclease digests of genomic DNA. To interpret PFGE in categories of "indistinguishable," "closely related," and "different," we used previously described criteria for the evaluation of Mycobacterium avium complex isolates. With a minimum of 10 interpretable bands, strains were interpreted as indistinguishable (no band differences), closely related (1–3 band differences), possibly related (4–6 band differences), and different (>7 band differences). These isolates underwent species confirmation by sequencing of the internal transcribed spacer 1. M. intracellulare and M. chimaera are indistinguishable without gene/region sequencing.