Effect of GSTM2-5 Polymorphisms on Lung Function Growth
Effect of GSTM2-5 Polymorphisms on Lung Function Growth
Based on results of this study, it is clear that certain genes within the GSTM2-5 loci explain some differences in lung function in late adolescence; however, joint effects with tobacco smoke exposure were not detected. This finding was validated through examination of joint effects of diplotypes and in utero smoke exposure, which did not significantly alter methylation levels within this gene cluster. Only one study has reported an interaction of maternal smoking with GSTM2-5 genes. A past genetic association study has examined the interactive effects of maternal genotypes on other GST genes, but no studies have examined the joint effect of maternal genotype and GSTM2-5 genotypes in their offspring. Future studies are necessary to elucidate conflicting results, taking into account DNA methylation ×gene interactions, interaction with other xenobiotics affecting the glutathione levels, and interaction with the maternal genome.
Conclusions
Based on results of this study, it is clear that certain genes within the GSTM2-5 loci explain some differences in lung function in late adolescence; however, joint effects with tobacco smoke exposure were not detected. This finding was validated through examination of joint effects of diplotypes and in utero smoke exposure, which did not significantly alter methylation levels within this gene cluster. Only one study has reported an interaction of maternal smoking with GSTM2-5 genes. A past genetic association study has examined the interactive effects of maternal genotypes on other GST genes, but no studies have examined the joint effect of maternal genotype and GSTM2-5 genotypes in their offspring. Future studies are necessary to elucidate conflicting results, taking into account DNA methylation ×gene interactions, interaction with other xenobiotics affecting the glutathione levels, and interaction with the maternal genome.