Health & Medical Environmental

Domestic Radon Exposure and Risk of Childhood Cancer

Domestic Radon Exposure and Risk of Childhood Cancer

Methods

Databases


We used data from the Swiss National Cohort (SNC 2011), which is described in detail elsewhere (Bopp et al. 2009;Spoerri et al. 2010). Briefly, the SNC is a nationwide longitudinal research platform that links census data collected in 1990 and 2000 with birth records, mortality records, and emigration data. It includes data on all persons living in Switzerland at the time of each census, including individual- and household-level data (e.g., information on child sex, birth order within each household, and the socioeconomic status of adults based on highest education and socioprofessional category), as well as building information. Participation in the census was compulsory, and the coverage for 2000 was estimated to be 98.6% (Renaud 2004). For this study we included all children between 0 and 15 years of age living in Switzerland on 5 December 2000.

Incident cancer cases in the SNC were identified by probabilistic record linkage with the Swiss Childhood Cancer Registry (SCCR) based on birth date, sex, and residential geocodes. The SCCR is a longitudinal national database founded in 1976 by the Swiss Pediatric Oncology Group (SPOG) (Michel et al. 2008). This registry contains baseline information and long-term follow-up information on cancer patients < 21 years of age (Kuehni et al. 2012). Registration of children diagnosed with cancer before 16 years of age is estimated to be at least 95% (Kuehni et al. 2012).

Of 1,127 cases identified in the SCCR, 2 were excluded because their cancer was diagnosed after they emigrated from Switzerland and 117 were excluded because they could not be successfully linked with records in the SNC (Figure 1). The remaining 1,008 were linked to the SNC cohort consisting of 1,332,944 children. Finally, 45,590 (including 11 cases and 45,579 noncases) were excluded from our analysis because their exact place of residence was uncertain (e.g., because they were living in emergency accommodations, mobile or provisional dwellings, or buildings that could not be geocoded), leaving 997 cases and a total cohort of 1,287,354 children for the main analysis. In addition, we conducted a sensitivity analysis that also included 51 of the 117 cases who could not be linked to the SNC, but had address information from the 2000 census (1,048 cases in a total cohort of 1,287,405 children). This study is based on register data, and informed consent was not required. The SNC was approved by the ethics committees in Bern (205/06) and Zurich (13/06) and by the Federal Data Protection Office.



(Enlarge Image)



Figure 1.



Overview on the study population obtained from linking the Swiss Childhood Cancer registry to the Swiss National Cohort. ALL, acute lymphoblastic leukemia.




Exposure Assessment


We estimated indoor radon exposure at baseline (5 December 2000) for each child's home address using a nationwide radon prediction model (Hauri et al. 2012, 2013). The prediction model is a log-linear regression model that was developed based on 35,706 measurements, carried out in Switzerland between 1994 and 2004. Relevant predictors in the model were tectonic units, building age, building type, soil texture, degree of urbanization, and floor level (Hauri et al. 2012). The adjusted R was 20%. The model was validated using an independent data set of 8,925 radon measurements that were not used to develop the model. Spearman rank correlations between predicted and measured radon values were 0.45 (95% CI: 0.44, 0.46) for the development data set and 0.44 (95% CI: 0.42, 0.46) for the validation data set. Using a cut-off at the 90th percentile, areas under the ROC (receiver operating characteristic) curve were 0.73 (95% CI: 0.72, 0.74) for the development set and 0.72 (95% CI: 0.71, 0.74) for the validation set. Sensitivity was 0.31 for the development and 0.29 for the validation data set, and specificity was 0.92 for both data sets.

We evaluated potential confounders identified from the literature on environmental risk factors for childhood cancer and leukemia (McNally and Parker 2006; Tong et al. 2012). The following factors were considered: distance to major roads, railways, and electric power lines; particulate matter air pollution (PM10; ≤ 10 μm in aerodynamic diameter), NO2, and ambient benzene concentrations; exposure to radiofrequency electromagnetic fields from broadcast transmitters; and potential exposure to agricultural pesticides based on distance to the nearest orchard, vineyard, or golf course. In addition, we considered distance to the nearest pediatric cancer center because it may be associated with the completeness of childhood cancer registration, which may be better in areas with a pediatric cancer center than in the rest of Switzerland, and with the spatial distribution of radon. We estimated exposures to potential confounders from digital maps, using ArcGIS (ESRI, Redlands, CA, USA). We extracted data on background gamma radiation exposure from Swiss radiation maps (Rybach et al. 2002) with a grid cell resolution of 2 km. We obtained digital maps of power lines with a resolution of 1:25,000, from the Federal Inspectorate for Heavy Current Installations. Distances to major roads were obtained using digital maps on the traffic network with a resolution of 1:25,000 (VECTOR25-maps), published by the Federal Office of Topography (swisstopo) (2010). Data distances to orchards, vineyards, and golf courses (used to estimate exposure to agricultural pesticides) were derived from Swiss land use statistics for 1997 (Arealstatistik Schweiz), published by the Swiss Federal Statistical Office (Neuchâtel, Switzerland; http://www.bfs.admin.ch) with a grid cell resolution of 100 m × 100 m. Pediatric cancer centers were manually geocoded using the fixed point data service of the Federal Office of Topography (2010). We extracted modeled benzene levels for the year 2005 from a digital map with a grid cell resolution of 400 m, published by the Swiss Agency for the Environment, Forests and Landscape (Heldstab et al. 2004) and extracted PM10 and NO2 exposure levels from 2005 from digital maps with a grid cell resolution of 100 m, published by the Federal Office of the Environment (Heldstab et al. 2011). Exposure to analogous, digital radio, and digital TV broadcast transmitters was modeled for the year 2000 for residences within 10 km of a transmitter. Exposure to short-wave radio and medium-wave radio was modeled for the year 1997 for residences within 20 km of these transmitters. These models were developed by the Federal Office of Communications (Biel, Switzerland; http://www.bakom.admin.ch).

We used exposure to PM10, NO2, and benzene ambient concentrations as linear variables. The other factors were used categorically with predefined as exposure corridors for distance to major roads [> 400 m to highways or > 200 m to main roads (class 1), 100–400 m to highways or 50–200 m to main roads, 40–100 m to highways or 20–50 m to main roads, < 40 m to highways or < 20 m to main roads], to high voltage power lines (including railways) (< 50 m, 50–200 m, 200–600 m, > 600 m), to agricultural pesticides [distance to the nearest orchards (> 200 m, 100–200 m, 50–100 m, < 50 m)], to vineyards (> 500 m, 250–500 m, 100–250 m, < 100 m), to golf courses (> 3,000 m, 1,500–3,000 m, 750–1,500 m, < 750 m), and to the nearest pediatric center (> 30 km, 15–30 km, 5–15 km, < 5 km). Exposure categories for the radio frequency–electromagnetic frequency exposure were used, with a cut-off at 0.05 and 0.2 V/m to differentiate among low, medium, and high exposures. Residences outside the model area were considered in the lowest exposure category.

Statistical Analysis


We analyzed data using Cox proportional hazard models with age as the underlying time scale. Time at risk began on 5 December 2005 (the date of the census) and ended on the date of diagnosis, death, emigration, the child's 16th birthday, or 31 December 2008, whichever occurred first. We categorized exposure using a priori cut points at the 50th and 90th percentiles. In addition, we conducted linear exposure–response analyses of radon concentration modeled as simple continuous predictor. Hazard ratios (HRs) are expressed per 100 Bq/m increase in radon exposure. All models were adjusted for child sex, birth order within each household (linearly), socioeconomic status of the parents using the parents' highest education (low, medium, high, no information) and their job position (low, medium, high, unemployed/retired/housewife/volunteer work, no information), as well as total background gamma radiation exposure from cosmic, terrestrial, and artificial ground radiation from the Chernobyl event [by categorizing at the 50th, 103 nSV/h (nanoSieverts per hour); and 90th percentiles, 133 nSV/h], and period effects (by dichotomizing follow-up time into two 4-year blocks). We added potential confounders to models one at a time and used a change-in-estimation criterion of 10% to select covariates for the final model (Greenland 1989). None of the potential confounders met this criterion; therefore our final models included child sex, birth order, socioeconomic status, background gamma radiation exposure, and period only. We confirmed the proportional hazard assumption using Nelson–Aalen survival functions and statistical tests based on Schoenfeld residuals and by examining variation in associations between covariates and the outcomes varied over time (data not shown).

Subgroup and Sensitivity Analyses


Because a recent case–control study (Bräuner et al. 2012) suggested an interaction between domestic radon exposure and NOx (nitrogen oxides) from traffic exhaust, we stratified our analysis at the median NO2 concentration in our cohort (21.6 μg/m). Further, we evaluated possible effect modification by sex because the risk of cancer is higher for boys than girls (Michel et al. 2008). We also conducted separate analyses for preschool children (< 5 years of age) and schoolchildren (5–15 years of age) because young children may be more vulnerable to exposure from ionizing radiation than older children (Little et al. 2010). In addition, for children 5–15 years of age, we evaluated the effect of exposure misclassification due to residential mobility (Warner et al. 1995) by conducting separate analyses of children who did or did not move residence between 1995 and 2000 based on information available in the SNC.

We also carried out a separate regional analysis for cantons that lie at least partly in the Alpine region (Grisons, Appenzell, Bern, Glarus, Lucerne, Unterwalden, Schwyz, St. Gallen, Ticino, Uri, Valais, Vaud) where the highest radon concentrations were found.

Finally, we performed a sensitivity analysis that included 51 cases who could not be linked to the SNC but had information in the SCCR on place of residence at the time of the 2000 census. Because we did not have information on the floor they lived on, building age, or building type for these children, we estimated their radon exposures assuming that they lived on the first floor of apartment buildings built between 1946 and 1970, consistent with average values for all children based on the 2000 census. These models were adjusted for sex, environmental gamma radiation, and period effects, but not for socioeconomic status of the parents or birth order.

You might also like on "Health & Medical"

Leave a reply