Health & Medical Environmental

Domestic Radon Exposure and Risk of Childhood Cancer

Domestic Radon Exposure and Risk of Childhood Cancer

Discussion


Our census-based cohort study did not indicate an association between domestic radon concentration and childhood cancer. The results were consistent across various sensitivity and subgroup analyses, and for different types of cancer.

To our knowledge, other cohort studies on domestic radon concentration and childhood cancers have not been published. The main strength of the present study is its nationwide coverage, which substantially reduces the likelihood of selection bias. Exposure assessment was based on a comprehensive prediction model that was developed and validated using > 40,000 measurements taken throughout Switzerland between 1994 and 2004. Previous case–control studies have reported participation < 55%, and exposure measurements were often limited to subsets of study participants (Cartwright et al. 2002;Kaletsch et al. 1999;Lubin et al. 1998;Maged et al. 2000;Steinbuch et al. 1999;Stjernfeldt et al. 1987). In contrast with ecological studies, we had information on a number of potential individual-level confounders (Laurier et al. 2001; Tong et al. 2012), although adjusting for these variables did not materially affect hazard ratios, suggesting little or no confounding by these factors although we cannot completely exclude residual confounding due to misclassification in the confounder variables. This is consistent with the current knowledge on childhood cancer etiology: There is evidence of increased risks among children with a genetic predisposition and among those exposed to high doses of ionizing radiation (e.g., applied for cancer treatment), but little evidence of environmental risk factors (Belson et al. 2007; Eden 2010; McKinney 2005;Pollack and Jakacki 2011). Only two previous case–control studies had similar methodological features to the present study—large sample size, consideration of confounding, radon exposure estimation based on prediction models, and a small likelihood of selection bias due to the use of population-based controls identified from registries without requiring consent for participation (Kendall et al. 2013;Raaschou-Nielsen et al. 2008). In contrast with our study, a Danish study reported that domestic radon exposure was associated with ALL (rate ratio = 1.56; 95% CI: 1.05, 2.30 per 1,000 Bq/m–years) based on 860 cases diagnosed between 1968 and 1994, and 1,720 registry-based controls (Raaschou-Nielsen et al. 2008). However, no association was reported between radon concentrations and CNS tumors (rate ratio = 0.92; 95% CI: 0.69, 1.22 per 1,000 Bq/m–years based on 922 CNS tumor cases). In a British study, the estimated relative risk for leukemia per 1,000 Bq/m–years increase in cumulative radon exposure was 1.12 (95% CI: 0.88, 1.43) based on 9,058 cases and 11,912 controls, and the corresponding estimate for CNS tumors was 1.15 (95% CI: 0.88, 1.50) based on 6,585 cases and 8,997 controls (Kendall et al. 2013).

Recently, associations between radon and nonrespiratory cancers also have been investigated in adults. Consistent associations were not observed between nonrespiratory cancer mortality and ecologic measures of residential radon levels in the large prospective American Cancer Society cohort, which includes > 1 million participants (Turner et al. 2012). For example, the HR for leukemia mortality was 0.93 (95% CI: 0.82, 1.05) per 100-Bq/m increase in mean county-level residential radon concentrations. These findings are consistent with a collaborative analysis of 11 studies of miners that indicated that leukemia mortality was not associated with radon exposure (Darby et al. 1995). Wheeler et al. (2012) reported evidence of an association between radon levels and skin cancer in an ecological study conducted in southwest England during 2000–2004 (Wheeler et al. 2012). The authors speculated that radon and its decay products are attracted to water molecules, and that the resulting aerosols could adhere to the skin via electrostatic attraction. Such a mechanism was also proposed in a subsequent analysis of the Danish case–control study that reported evidence that air pollution (NOx) from road traffic strengthened associations between radon and childhood leukemia (Bräuner et al. 2012). Our study results, however, do not support such an interaction.

Our study also has limitations, and given the fact that we did not observe an association the main concern may be that we have missed a true association due to lack of power, or exposure misclassification. Our study included fewer cases than did the two large register-based case–control studies from Denmark (Raaschou-Nielsen et al. 2008) and Great Britain (Kendall et al. 2013). However, estimated exposure levels were larger in our Swiss study population on average (arithmetic mean radon concentration, 86 Bq/m; range, 0.7–490.1 Bq/m) than in the Danish (arithmetic mean concentration, 48 Bq/m; range, 4 to 254 Bq/m) and British studies (arithmetic mean radon in the control group, 21.3 Bq/m; range, 1.2–692 Bq/m). Little et al. (2010) pointed out that in epidemiological studies of cancer and ionizing radiation, statistical power is influenced much more by differences in mean dose than by the number of cases. Thus, in terms of statistical power, the large differences in exposure levels of our study population may at least partly compensate for the smaller number of cases. Regarding exposure misclassification, we deal in our study mainly with a Berkson-type error because we used a prediction model (Heid et al. 2004;Raaschou-Nielsen et al. 2008;Steenland et al. 2000). Unlike errors of individual measurements, this type of error does not bias estimates of associations towards unity, but instead reduces statistical power resulting in wider confidence intervals (Armstrong 1998;Steenland et al. 2000). Although non-Berkson error may have been introduced in the exposure assessment if people changed their place of residence, associations based on cohort members who did not relocate during the 5 years before 2000 were similar to estimates for the cohort as whole, suggesting that exposure misclassification did not substantially bias our findings.

The observed lack of an association between domestic radon exposure and childhood leukemia or CNS tumors is consistent with expectations, given low estimated doses of exposure to domestic radon for red bone marrow and the CNS. For a 1-year-old child, an annual radon concentration of 100 Bq/m [i.e., the radon concentration where remedial actions are recommended according to the World Health Organization (2009)] corresponds to an equivalent dose to the lung of 19.6 mSv per year (Kendall and Smith 2005). Organ-specific doses for red bone marrow (0.43 mSv) or the brain (0.19 mSv) are much smaller (Kendall and Smith 2002, 2005). Comparable values were estimated for 10-year-old children (lung: 21.1 mSv; red bone marrow: 0.52 mSv; and brain: 0.14 mSv) (Kendall and Smith 2005). These dose estimations support our observed results and suggest that doses from domestic radon levels to organs other than the lung are too weak to noticeably increase cancer risks.

You might also like on "Health & Medical"

Leave a reply