3D Visualization of a Thrombus Between the Leads of a Pacemaker
3D Visualization of a Thrombus Between the Leads of a Pacemaker
Introduction: Two-dimensional echocardiography is a useful tool in diagnosing cardiac masses. However, the three-dimensional offline reconstruction technique of transesophageal echocardiography might be superior to two-dimensional transesophageal echocardiography in providing additional information of structural details.
Case presentation: We report the case of a 76-year-old Caucasian man with a permanent dual-chamber pacemaker and a worm-like right-heart thrombus in transit. Two-dimensional transthoracic echocardiography and two-dimensional transesophageal echocardiography showed that it was debatable as to whether "the worm" was originating from the leads. Offline three-dimensional transesophageal echocardiography reconstruction technique proved superior in identifying the cardiac mass as a thrombus trapped between the leads of the pacemaker. The thrombus was successfully dissolved by systemic heparin therapy.
Conclusions: The three-dimensional transesophageal echocardiography is useful and effective in patients with implanted pacemakers or defibrillators when other closely competing imaging modalities are contraindicated, such as magnetic resonance imaging. In patients with pacemakers and trapped thrombus in transit for whom surgical therapy might be a high risk, medical therapy seems to offer a safer and convincing alternative. Whether the management of right-heart thrombi has to be modified due to the presence of pacemaker leads is controversial.
In the context of different imaging modalities, two-dimensional (2D) transesophageal echocardiography (TEE) is a useful tool in diagnosing cardiac masses. It is superior to transthoracic technique in defining the morphology of intracardial structures. By contrast, three-dimensional (3D) TEE might be superior to 2D TEE. Its higher spatial resolution and superior visualization provides additional information about intracardiac anatomy and structural details, such as invasion of underlying cardiac structures and points of attachments.
Abstract and Introduction
Abstract
Introduction: Two-dimensional echocardiography is a useful tool in diagnosing cardiac masses. However, the three-dimensional offline reconstruction technique of transesophageal echocardiography might be superior to two-dimensional transesophageal echocardiography in providing additional information of structural details.
Case presentation: We report the case of a 76-year-old Caucasian man with a permanent dual-chamber pacemaker and a worm-like right-heart thrombus in transit. Two-dimensional transthoracic echocardiography and two-dimensional transesophageal echocardiography showed that it was debatable as to whether "the worm" was originating from the leads. Offline three-dimensional transesophageal echocardiography reconstruction technique proved superior in identifying the cardiac mass as a thrombus trapped between the leads of the pacemaker. The thrombus was successfully dissolved by systemic heparin therapy.
Conclusions: The three-dimensional transesophageal echocardiography is useful and effective in patients with implanted pacemakers or defibrillators when other closely competing imaging modalities are contraindicated, such as magnetic resonance imaging. In patients with pacemakers and trapped thrombus in transit for whom surgical therapy might be a high risk, medical therapy seems to offer a safer and convincing alternative. Whether the management of right-heart thrombi has to be modified due to the presence of pacemaker leads is controversial.
Introduction
In the context of different imaging modalities, two-dimensional (2D) transesophageal echocardiography (TEE) is a useful tool in diagnosing cardiac masses. It is superior to transthoracic technique in defining the morphology of intracardial structures. By contrast, three-dimensional (3D) TEE might be superior to 2D TEE. Its higher spatial resolution and superior visualization provides additional information about intracardiac anatomy and structural details, such as invasion of underlying cardiac structures and points of attachments.